
Jeffrey Weekley

Interactive HPC using Containers on Nautilus
Introduction to PRP Nautilus, Kubernetes, and Containerized Software

24 FEB 2022

Agenda
1. Introduction

2. Background

2.1.Pacific Research Platform

2.2.Nautilus Cluster

3. About Containers and Kubernetes

4. Accessing Nautilus

5. Software Tools

6. Cluster Control

7. Data

8. Other considerations

9. Jupyter

10.Concluding Q&A

What is the Pacific Research Platform?
• The PRP is a partnership of more than 50

institutions, led by researchers at UC San
Diego and UC Berkeley.

• PRP is an end-to-end high-speed data
freeway built on CENIC and Pacific NW
GigaPOP fiber optic networks

• Built for data intensive science collaboration

• Led to the rise of data-intensive science
collaborations

The PRP 2015-2020

What is Nautilus?
• Nautilus1 is a highly distributed, but centrally managed community cyberinfrastructure.

It is an on-demand, real-time accessible cluster with >500 GPUs and >7000 CPU cores.

• Approximately 187 nodes provide service from all 10 UC campuses and many partner
institutions

• Researchers on more than 30 campuses use Nautilus

• Nautilus advantageously exploits the networking, space, and features of many of the
Science DMZs previously built with NSF funding on over 100 US campuses.

• Unlike traditional HPC, Nautilus is interactive

About Containers and
Orchestration Schemes…

First…what is a container?

Containerization is the packaging
o f so f tware code w i th jus t
the operating system (OS) libraries
and dependencies required to run
the code to create a single
lightweight executable.

From https://www.scalyr.com/blog/containers-benefits-and-making-a-business-case

https://www.scalyr.com/blog/containers-benefits-and-making-a-business-case

Software Containers versus Virtual Machines

Containers are an abstraction at the app layer that packages
code and dependencies together. Multiple containers can run
on the same machine and share the OS kernel with other
containers, each running as isolated processes in user space.

Virtual machines (VMs) are an abstraction of physical
hardware turning one server into many servers. The
hypervisor allows multiple VMs to run on a single
machine. Each VM includes a full copy of an operating
system, the application, necessary binaries and libraries
- taking up tens of GBs.

From https://www.docker.com/resources/what-container

Kubernetes Cluster vs. Traditional HPC
• Both K8s and HPC schedulers are workload managers

• HPC focuses on high throughput jobs with distributed memory

• Jobs are scheduled and resources can be allocated based on sophisticated
accounting schemes

• K8s allows for interaction with running jobs (pods)

• K8s scheduler matches pods to appropriate nodes, more sophisticated
scheduling is possible, but atypical

What is Kubernetes (K8s)
K8s is an open-source container orchestration system for automating software deployment, scaling,
and management.

Key K8s Concepts

• Control Plane manages the workload, handles internode communications, keeps knowledge of the cluster state,

provides scheduling services, manages resources, and exposes the K8s API so that both internal and external
interfaces can be used.

• Nodes - a node is a physical machine were containers are deployed. Each node must run a container runtime (in
Nautilus, it is ‘Containerd’).

• Namespaces provides a way for K8s to partition cluster resources across multiple or many users in an exclusive way.

• Pods - pods are the basic scheduling unit of K8s. Pods consist of one or more containers running inside. Each pod
gets a unique IP address (important!) so that micro services or applications can access the pod without contention. Pod
IP addresses are ephemeral.

• Services are a set of pods working together.

Pods in Nautilus
Pods are the smallest, most basic deployable objects in Kubernetes. A Pod
represents a single instance of a running process in your cluster.
Pods contain one or more containers, such as Docker containers.
Pods also contain shared networking and storage resources for their
containers:

• Network: Pods are automatically assigned unique IP addresses. Pod
containers share the same network namespace, including IP address and
network ports. Containers in a Pod communicate with each other inside
the Pod on localhost

• Storage: Pods can specify a set of shared storage volumes that can be
shared among the containers

Pods running on a cluster are automatically able to communicate with other
pods

Managing Users with Namespaces
Groups of users working together

Namespace Admin

Namespace

• Built on top of PRP 10-100Gbps
networks

• Standardized hardware profiles

• 8-GPU Servers (FIONA8s)

• High-density Storage Nodes

• NVMe and SSDs

• 10Gbps NIC for GPUs

• Dual 100 Gbps NIC for storage

Two kinds of Nautilus Nodes

Storage Node

GPU Node

Software Tools

An Analogy for Nautilus

• The ingredients you choose are you
code. You can adjust them to suit your
needs or taste

• The mixer (or spoon and bowl) are your
development tools (e.g. Docker or VIM)

• The YAML file is the recipe. How you
will mix your ingredients together

• kubectl controls the oven

• Nautilus is your oven. It has many
features to help you make your cookies
delicious.

Cookies

Using, Creating and Deploying Containerized Software
Docker, Docker Hub, YAML and Kubectl

• Docker (or other containerization software) is used to create images. Common
practice is to develop inside Docker, with the container running while you
make changes to your code (aka DevOps)

• Docker Hub contains thousands of pre-built images (what you need may
already be available)

• Once you know what software you want to use, YAML provides the “recipe”
for your deployment

• Kubectl is the tool to launch your deployments

Let’s examine Docker…

Docker and Docker Hub
Code Reuse at https://hub.docker.com
Code Development using Docker https://docs.docker.com/get-started/overview/

We know that…

• Kubernetes is an orchestration framework for deploying containerized software. It is
naive about the actual software.

• In order for you to develop Services, you will need to use or create software to deploy

• Most people can simply re-use software by referencing a pre-built Docker image

• Users customize existing Docker images with additional software for their purpose

• There are many thousands of these images available on Docker Hub

• Users can create their own software containers using Docker on their local computer

https://hub.docker.com
https://docs.docker.com/get-started/overview/

Container Supply Chain
aka DevOps

From: CMU’s Software Engineering Institute “7 Quick Steps to Using Containers Securely”

Docker Hub

Kubernetes Nautilus

You

kubectl + YAML

Your GitLab

https://insights.sei.cmu.edu/blog/7-quick-steps-to-using-containers-securely/

apiVersion: v1

kind: Pod

metadata:

 name: test-pod

spec:

 containers:

 - name: mypod

 image: centos:centos7

 resources:

 limits:

 memory: 100Mi

 cpu: 100m

 requests:

 memory: 100Mi

 cpu: 100m

 command: ["sh", "-c", "echo 'Im a new pod' && sleep infinity"]

YAML: Yet Another
Markup Language

Code is what you
will run…

Using YAML and kubectl is how you will run it

What is YAML?
• A human-readable data-serialization language

• Commonly used for configurations

• Similar to eXtensible Markup Language, but with fewer syntax conventions

• Python-style indentation to reflect hierarchy and order-of-operations

• Encodes strings, integers, floats and arrays

• Most Nautilus users modify example YAML files

• Used to request resources, deploy services and code (in containers)

for a generic pod
Sample YAML File

Using Nautilus

Account setup

Namespace

Software

Deployment

Getting Help

Nautilus Access Levels

There are three levels of access to Nautilus

Guest

User

Admin

Logging in for the First Time
Using CI Login and Your Institutional Credentials

Guest Level

Once you’ve logged in for the first time, you are a “Guest”

Guests have credentials but no privileges. Before you can
access resources, you must be validated.

At this stage, you merely get your system configured to
use Nautilus

Required Software and Configuration
Kubectl and Nautilus Configuration File

Logged in with my

Institutional Credential

Download Configuration File
You may need to login again - be sure to use the same credentials

In your home directory, create a hidden folder, where you will place the downloaded configuration file

Tepin:~ jdweekley$ mkdir ~/.kube
Tepin:~ jdweekley$ mv ~/Downloads/config ~/.kube/config
Tepin:~ jdweekley$ ls -lah
drwxr-xr-x 5 jdweekley staff 160B Feb 3 12:31 .kube

The Configuration File

Contains credentials and configurations that link your local computer to the cluster

Access Levels User

Admin

Guest

User Level
Guests navigate to Nautilus’ Matrix Chat #Nautilus Support channel to be promoted from Guest to User.

Users may then join an existing namespace by submitting a request to the namespace admin

Namespace Admin

Namespace

https://element.nrp-nautilus.io/

Admin Level
• Users may request to be promoted to Admin in the chat support channel

• Admins may create namespaces, join users to them and are responsible for
maintaining community standards for the users in their namespaces

Requesting Privileges (and Getting Help)
Via the Matrix chat at https://element.nrp-nautilus.io

All requests for assistance are done in Matrix

https://element.nrp-nautilus.io

Controlling the Cluster from your Desktop

Review of what we’ve done so far…

• We have access to Nautilus and we’ve been promoted to User (to join
someone else’s namespace) or we’ve created our own namespace as Admin

• We have installed Docker so we can build or modify images (i.e. containers)

• We have access to a private repo

• We have installed our config file so the cluster knows who we are

How do we actually control the cluster?

Installing Kubectl
In order to use your config file to control the cluster, you will need to install this tool

The Kubernetes command-line tool, kubectl, allows you to run
commands against Kubernetes clusters. You can use kubectl to deploy
applications, inspect and manage cluster resources, and view logs. For
more information including a complete list of kubectl operations, see
the kubectl reference documentation.

Installation instructions can be found here:

https://kubernetes.io/docs/tasks/tools/

https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/tasks/tools/

Structure of kubectl
Users interface with a Kubernetes-controlled system using The Kubernetes command-line tool, “kubectl”

kubectl [command] [TYPE] [NAME] [flags]

“command” describes the operation to perform. They are limited to these
operations:

• create generates new resources from files or standard input devices

• describe retrieves details about a resource or resource group

• get fetches cluster data from various sources

• delete removes resources as directed

• apply pushes changes based on configuration files

Structure of kubectl (cont)
Users interface with a Kubernetes-controlled system using The Kubernetes command-line tool, “kubectl”

kubectl [command] [TYPE] [NAME] [flags]

[TYPE] specifies the category of resource you are targeting

[NAME] this case-sensitive field specifies the name of the resource (you will
name your pods, deployments, etc.) Using the NAME field restricts to
operation to that named resource. Leaving it blank will apply it universally.

[Flags] the modifier [Flags] denotes any special options or requests made of a
resource. This modifier can be used to over-ride defaults or environment
variables.

What about my data?

Persistent Data in K8s
• Managing storage is a distinct

problem from managing
compute instances

• Storage is provisioned through
the PersistentVolumeClaim, on
Nautilus comes in distinct
classes and regions

• Ceph shared filesystem
(CephFS) is the primary way of
storing data in Nautilus which
allows mounting the same
volume(s) from multiple PODs
in parallel

StorageClass Filesystem
Type

Region AccessModes Storage Type Size

rook-cephfs CephFS US West ReadWriteMany Spinning
drives with
NVME meta

2.5 PB

rook-cephfs-east CephFS US East ReadWriteMany Mixed 1 PB

rook-cephfs-pacific CephFS Hawaii+Guam ReadWriteMany Spinning
drives with
NVME meta

384TB

beegfs BeeGFS US West ReadWriteMany 2PB

rook-ceph-block (*default*) RBD US West ReadWriteOnce Spinning
drives with
NVME meta

2.5 PB

rook-ceph-block-east RBD US East ReadWriteOnce Mixed 1 PB

rook-ceph-block-pacific RBD Hawaii+Guam ReadWriteOnce Spinning
drives with
NVME meta

384 TB

seaweedfs-storage SeaweedFS US West ReadWriteMany NVME 300 TB

Other Types of Storage in Nautilus
• Local: Most nodes in the cluster have local NVME drives, which provide faster

I/O than shared filesystems. These can be used for workloads that require
very intensive I/O operations

• Nextcloud: access to the Nextcloud instance running on Nautilus. It's similar
to other file sharing systems (Dropbox, Google Drive etc) and can be used to
get data in the cluster, temporary stage the results, share data and so on

• SeaweedFS is a high-performance distributed filesystem, optimized for
working with huge number of files and also huge files

• SyncThing is a tool to synchronize files collections between several devices
with no single server, which creates a mesh between all devices and works
well for large files collections

Moving Data
Remember: K8s pods have local addresses and are not accessible from outside

• Kubectl has a copy function:

kubectl -n my_namespace cp ~/tmp/file.dat my_super_pod:/tmp/file.dat

This method is not suitable for large data transfers!

• Using S3 is the most scaleable way to move large data sets. Refer to the S3
Documentation for more information

• Directly manipulating from inside your pod using standard Linux tools. This
allows you to move the data in as if it were another physical host. All the
same rules apply. CAVEAT: once the pod goes away, so does your data.

https://ucsd-prp.gitlab.io/userdocs/storage/ceph-s3/
https://ucsd-prp.gitlab.io/userdocs/storage/ceph-s3/
https://ucsd-prp.gitlab.io/userdocs/storage/ceph-s3/
https://ucsd-prp.gitlab.io/userdocs/storage/ceph-s3/

Other considerations…

Microservices
Breaking your workflow into services, and those services into microservices may help you debug and scale

What is a Microservice?

• A microservice is an architectural design for building a distributed
application.

• Microservices break an application into independent, loosely-coupled,
individually deployable services.

• This architecture allows for each service to scale or update using the
deployment of service proxies without disrupting other services in the
application and enables the rapid, frequent and reliable delivery of large,
complex applications.

Additional Applications
Some helpful applications run natively in Nautilus

• Traceroute
tool

• PerfSONAR

• JupyterHub (West Coast)

• JupyterHub (East Coast)

• WebODM (Web Open
Drone Map): Drone
Images stitching

• Appwrite: Backend Server
for Web, Mobile, others

• EtherPad: notebooks

• GitLab

• Jitsi: Video conferencing

• Nextcloud: File sharing

• Overleaf: LaTeX collaboration

Computation Collaboration Monitoring

More on Jupyter Lab

Jupyter on Nautilus
A few things to know…

• New users should request
access in Matrix

• Multiple GPU types
available:

1060 1080
1080Ti 2080Ti

TITAN XP Tesla K40
TITAN RTX 3090
Tesla V100 RTX A100
RTX8000 RTX A40

Jupyter on Nautilus
A few more things to know…

• Mounting of CephFS PVCs
allowed

• Preconfigured, common
software stacks

• Runs common iPython
Notebooks

• Notebooks persist (very
handy)

Review
Putting it all together…
• There are software tools and configurations you’ll need: Docker, kubectl, config file in ~./kube directory

• Docker can be used to build customize containers

• Docker Hub has many pre-built software containers

• Access to Nautilus is granted at three levels: guest, user and admin

• kubectl is how you interact with the cluster

• Your YAML file tells the cluster what you want it to do

• Deployments are groups of pods and services that make up your workflow

• Storage outside of your pod is available through a PersistentVolumeClaim

• Jupyter Lab is a good place to start exploring

Final Q&A

Questions about this presentation? jweekley@ucsc.eduQuestions about this Nautilus: see Documentation

For operational support, visit Nautilus Matrix chat

mailto:jweekley@ucsc.edu
https://ucsd-prp.gitlab.io
https://ucsd-prp.gitlab.io/userdocs/start/contact/

Jeffrey Weekley

The End
Introduction to PRP Nautilus, Kubernetes, and Containerized
Software

11 FEB 2022

