
SLURM 101
or How I Learned to Stop Worrying and Love the Scheduler

Josh Sonstroem
Sr. Infrastructure Engineer
jsonstro@ucsc.edu

What is SLURM
https://slurm.schedmd.com/

SLURM is an open source, fault-tolerant, highly scalable cluster management
and job scheduling system for *NIX clusters.

SLURM has 3 distinct features
1. Allocates access to compute node resources for some period of time
2. Offers a framework for starting, executing and monitoring (often parallel) jobs on

those allocated resources
3. Arbitrates contention for those resources by utilizing a queueing system to

manage pending work

 What’s in the name? Simple Linux Utility for Resource Management (SLURM)

https://slurm.schedmd.com/

SLURM Architecture
SLURM’s architecture supports a
distributed management model with
hierarchical design and
high-availability failover capabilities

It also provides a general-purpose
plugin mechanism available to easily
support various infrastructures

One or more physical and/or logical
clusters can be managed by a single
controller

SLURM Components
The 4 elements of SLURM’s distributed architecture:

1. A centralized manager, slurmctld, to monitor resources and work
2. A backup manager in HA configurations
3. Each compute server (node) has a slurmd daemon, which can be

compared to a remote shell awaiting work, executing it and returning
4. An optional slurmdbd (SLURM DataBase Daemon) which can be

used to record accounting information

HB uses the backfill scheduler calculation to fit properly sized and
time-limited jobs into the queues

SLURM
Vocab:

● Nodes
● Partitions
● Jobs
● Job Steps

SLURM
Vocab:

● Nodes
● Partitions
● Jobs
● Job Steps

SLURM
Vocab:

● Nodes
● Partitions
● Jobs
● Job Steps

SLURM
Vocab:

● Nodes
● Partitions
● Jobs
● Job Steps

SLURM
Vocab:

● Nodes
● Partitions
● Jobs
● Job Steps

SLURM Userland Tools

On Hummingbird the SLURM command line (CLI) tools are loaded by default
upon user login

These include, but are not limited to:
1. srun and sbatch to initiate different types of compute jobs
2. scancel to terminate queued or running jobs
3. sinfo to report system status
4. squeue to report the status of jobs
5. sacct to get information about jobs and job steps that are running or have completed

SLURM Administrative Tools

In addition to the userland tools every user has access to some administrative information
via the SLURM CLI admin tools

1. scontrol is the tool available to monitor and/or modify configuration and state
information on the cluster such as partitions (queues) and other settings as well as
detailed job information and accounting

2. sacctmgr is tool used to manage quality of service settings as well as the bank
accounting and user database

Partitions (aka Queues) and Accounts
On Hummingbird the SLURM command line tools are loaded by default upon login

● Accounts are access groups allowing use of resources on the cluster
● Partitions are a logical unit which break up the cluster into different usable units based on

the qualities or traits of different nodes or users/groups

When examining the system:
● To look at the partition definitions use scontrol
● To look at the available partitions use sinfo
● To look at the current and scheduled jobs use squeue
● To stop or cancel a current job use scancel
● To modify a current job use scontrol

A quick way to check the cluster

Some queues are restricted and are not for general use

Use command line options to customize

A view into what's running

Much easier to parse!

Understanding Partition Limits/Size
Important fields to note:

● MaxNodes
● TotalNodes
● TotalCPUs
● Max wall clock time
● AllowGroups
● State

Before submitting ask yourself...
● How many jobs will you need to run?
● How large will those jobs be?

○ How many cores will each job require (-n)
○ How much memory will each job require total or per cpu
○ How many nodes to accommodate these memory/core/size requirements? (-N)

● How long will each job take? (Wall time)
● What kind of execution is required -- serial or parallel?
● What is a reasonable max time to allocate to contain runaway or failure potentials?

Accordingly, what job type best fits my workflow: single-run, interactive, batch or array

● Is the software I need already available as a module?
● Are there sufficient compute resources currently available?
● Do I need access to any additional Generic RESouces (GRES) such as a GPU?

Finally, choose your partition based on these requirements and current availability

Interlude - Laying out a scientific work space
HB is a shared research system and as such has some limitations and some baseline expectations for how
users will behave and manage both their custom software and research data on the cluster

HB IS NOT INTENDED AS A LONG TERM or REDUNDANT STORAGE SYSTEM FOR DATA OR CODE --
it is YOUR responsibility to backup and maintain additional copies of important bits

There are 4 primary types of data we deal with in High Performance Computing (HPC):
1. Initial data: Often sync’d from external sources (no preservation, easily replicated)
2. Intermediate data: intermediary data generated by your work (no preservation, able to be replicated)
3. Custom code/documentation: preserved/versioned in a Source Control system like git or svn)
4. Results: Final results of one’s own work (long term preservation, MULTIPLE offsite backups)

Each of these types of data require different data protection, backup and long-term storage strategies and it
is important to layout your workspace in a way that administrators, collaborators and “future yous” can
quickly and succinctly differentiate between the types

Interlude - Example directory structure for HPC data

Types of Jobs - Single-Run

Single use or interactive jobs use srun

This can be helpful when trying to debug a batch script or problematic job step

To request an “interactive” job, if needed for debugging, use the --pty argument like so:

% srun -N 1 -n 1 -p 128x24 --pty bash

Then you will be able to ssh directly to the node and access your allocation

However, DO NOT run your software from here manually or your job will be killed since
the management of the resources are not under SLURMs control

Types of Jobs - Batch

Batch use or array jobs use sbatch

Sbatch can take its arguments either from command line flags or from special comments in
the batch submit script or mix & match (command line args take priority)

You should use a batch job anytime you have parallel work that needs doing or have an
actual HPC workload that is heavy duty

Submitting your job

Verifying your job's settings

That's a lot of details!

Types of Jobs - Array
● Array jobs are a special type of batch job allowing for simultaneous execution
● A job array is a collection of jobs that differ from each other by only a single index parameter
● Job arrays provide an easy way to group related jobs together
● To specify that only a certain number of sub-jobs in the array can run at a time, use the

percent sign (%) delimiter
● To submit a specific set of array sub-jobs, use the comma delimiter in the array index list
● You can specify a step size using a colon (:) in the array range for how many jobs to step

Array job example
We have a file with a list of paths to different files that you wish perform the same action on

You could submit a job that loops through the file on 1 node and does said action, or you could
submit an array job with an index range with however many lines the file contains

For this example, our file contains 1000 lines:

What are Job Steps?
● All SLURM jobs can be broken down into steps.
● Job steps are sets of (possibly parallel) tasks within a job

To limit the number of simultaneous tasks in an array use the % delimiter

● For example "--array=0-15%4" will limit the number of simultaneously
running tasks from the example job array to 4

● Use the ntasks parameter to map specific steps or tasks onto particular
processors and nodes

● Each sub-job in this job array will have a SLURM_ARRAY_JOB_ID that
includes both the parent SLURM_ARRAY_JOB_ID and a unique
SLURM_ARRAY_TASK_ID after the character underscore "_".

HB Template SLURM scripts

If you have a template that is useful to more than just
yourself, let us know and we can include it here.

Premade templates for your convenience. Just make a copy to your working directory and edit to meet
your needs

Anatomy of a basic sbatch Script (Preamble)
Name of Partition to use

Name to give your run

Name for output/error logs
 (use for troubleshooting)

Number of nodes to request

Number of tasks your
program will require
Amount of RAM requested
for your program

Time limit for the run (!!!)

Get status emails about your job

{

{

Anatomy of a basic sbatch Script

Any modules your program
requires in order to run

The program to run

Any system variables your
program might require

Some helpful detailed sinfo/squeue aliases
BASH version
User specific aliases and functions
alias si="sinfo -o \"%20P %5D %14F %8z %10m %10d %11l %32f %N\""
alias si2="sinfo -o \"%20P %5D %6t %8z %10m %10d %11l %32f %N\""
alias sq="squeue -o \"%8i %12j %4t %10u %20q %20a %10g %20P %10Q %5D %11l %11L %R\""
alias sq2="squeue --long -o \"%.8i %.12P %.12a %.12q %.8j %.8u %.8T %.10M %.12l %.6D %.10Q %.20R\""

TCSH version
alias si 'sinfo -o "%20P %5D %14F %8z %10m %11l %32f %N"'
alias si2 'sinfo -o "%20P %5D %6t %8z %10m %10d %11l %32f %N"'
alias sq 'squeue -o "%8i %12j %4t %10u %20q %20a %10g %20P %10Q %5D %11l %11L %R"'
alias sq2 'squeue --long -o "%.8i %.12P %.12a %.12q %.8j %.8u %.8T %.10M %.12l %.6D %.10Q %.20R"'

SLURM with MPI, threaded, or OpenMP (shared memory) Jobs

SLURM supports multiple frameworks for parallel execution including the industry standard OpenMPI
(message passing interface) and OpenMP for threaded or shared memory workloads. There are a number of
options available to optimize these types of workloads (and the details get complex quick):

OpenMPI jobs can use multiple processors that may, or may not, be on multiple compute nodes:
● The SLURM --ntasks flag specifies the number of MPI tasks created for your job, which can end up on different nodes
● For more control over how SLURM lays out your job, you can add the --nodes and --ntasks-per-node flags

○ --nodes specifies how many nodes to allocate to your job and SLURM will allocate your requested number of
cores to a minimal number of nodes on the cluster

For OpenMP Shared memory applications they can only run on a single node:
● You must set --ntasks=1, and then set --cpus-per-task to the number of threads you wish to use
● You must make the application aware of how many processors to use which depends on the application:

○ For some applications, set OMP_NUM_THREADS to a value less than or equal to the # of --cpus-per-task you set
○ For some applications, use a command line option when calling that application

Knowing your Hummingbird variants

hb.ucsc.edu

"Violet-tailed Sylph resting on a branch in northwestern Ecuador"
https://en.wikipedia.org/wiki/File:Violet-tailed_Sylph_2_JCB.jpg

Male Anna's Hummingbird
https://en.wikipedia.org/wiki/File:AnnasHummingbirdPaloAltoNorvig.jpg

hbfeeder.ucsc.edu
● Cluster login node

● Used for:

○ Compiling your code

○ Submitting jobs

○ Checking the status on
your submitted jobs

● Cluster storage node and data
transfer node (DTN)

● Used for:

○ Accessing your data
when you don't need the
cluster

○ Transferring your data
to or from the cluster

https://en.wikipedia.org/wiki/File:Violet-tailed_Sylph_2_JCB.jpg
https://en.wikipedia.org/wiki/File:AnnasHummingbirdPaloAltoNorvig.jpg

 Thank you!!! Questions, Comments???

DO Set time limits on your jobs

In the event of a run-away job, this
keeps it contained and keeps us
admins happy

DON'T Overprovision

Request only the resources you need

This is especially true for the GPU node! There
are four GPUs, but if you're only using one, you
need to declare it so that the other three are
available to others!

DON'T Leave data in Scratch

You are encouraged to use the scratch space when compiling your code or
post-processing your results
Note however, that the scratch storage is NOT GUARANTEED
We regularly purge the contents of scratch based on age - if your stuff is languishing in
there being unused, it will be deleted

