A git Workflow For

—
g e, - ‘;,/—”7
e, )e

\\ Hummingbird///

\ Zoom

\\clinic(\ Josh Sonstroem, DCO
|

A A d
\AA A




What Is Version Control and
Why To Use It

Version control is a system that records changes to a file or set of files over
time so that you can recall specific versions later.

Using a Version Control System or VCS is a very wise thing to do. It can allow
you to revert files back to a previous state, reset an entire project back to a
previous state, compare changes over time, see who last modified something
that might be causing a problem and when that change was made, as well as
providing implicit backups.*

*Not if you are gitlab, where 6 backup technologies failed in Feb 2017, but alas...



&« C & about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/ e & @‘n ocmAa ®0°

it Apps @ UCSCAWS @@ Stash X, Confluence [Ff BIT Jira W APMStash G Jenkins o Shinken [ ITR [ AYsucop » Other Bookmarks

V GitLab Product Pricing Resources Blog Support Q  Explore Signin Register

Wha

GitLab.com database incident

Yesterday we had a serious incident with one of our databases. We lost six hours of database data (issues,

Version contre
ti me so th at merge requests, users, comments, snippets, etc.) for GitLab.com.

Using a Versic
you to revert
previous stat

+ Back to engineering

Update: please see our postmortem for this incident

. Yesterday we had a serious incident with one of our databases. We lost six hours of database data (issues, merge
t h at mi g ht be requests, users, comments, snippets, etc.) for GitLab.com. Git/wiki repositories and self-hosted installations were
e q° . not affected. Losing production data is unacceptable and in a few days we'll publish a post on why this happened
providing img : - e
and a list of measures we will implement to prevent it happening again.

Update 6:14pm UTC: GitLab.com is back online

*Not if you are git

As of time of writing, we’re restoring data from a six-hour-old backup of our database. This means that any data
between 5:20pm UTC and 11:25pm UTC from the database (projects, issues, merge requests, users, comments,
snippets, etc.) is lost by the time GitLab.com is live again.




The 3 Types of Version Control

In general, all VCS fall into 3 broad categories:

1. Local Version Control - e.g. rcs, naive, [single] local copy

2. Centralized Version Control - e.g. svn, hierarchical control, clients checkout
files, central server [as single point of failure]

3. Distributed Version Control - e.g. git, 1-to-many servers, each is a full clone,
allows for decentralized models of control/distribution

The third category -- a distributed version control system or DVS for short --is
clearly ideal for projects like high-performance computing and scientific
reproducibility, allowing for collaboration across diverse groups of people in
multiple ways simultaneously within the same project. Many codebases for
collaborative science are already available on public source code repositories such
as , etc...



The 3 Types of Version Control

1. Local Version Control

DOOM'’s Development: A Year of Madness

hitps://www.youtube.com/watch?v=eBU34NZhW7| @ 42:24
An interview with Doom’s lead programmer John Romero from the 2018 WeAreDevelopers

Conference



https://www.youtube.com/watch?v=eBU34NZhW7I

The e e

1. Local® § n
DOOMTE puter {Of H’nt Ma!
https://w cbwi

wemgAreDevelo pers-



https://www.youtube.com/watch?v=eBU34NZhW7I
http://www.youtube.com/watch?v=eBU34NZhW7I&t=2544

The 3 Types of Version Control

1. Local Version Control
DOOM'’s Development: A Year of Madness
https://www.youtube.com/watch?v=eBU34NZhW7| @ 42:24

Developed from the way versions of files were stored by appending filenames with
timestamps, e.g. GetOTP 9Jan93. java, GetOTP 12Jan93. java, etc.

Local VCS improved upon this crude approach by storing just the difference
between these files in a database.

Thus, the first version would be the actual file but each successive version would
correspond to the difference between the current and the last version. Difference
between two such versions are called patch-sets. A local database was used to track
changes by storing the patch-sets. Any particular version could be recreated by
adding the patch-sets up to that version.


https://www.youtube.com/watch?v=eBU34NZhW7I

The 3 Types of Version Control

1. Local Version Control

Benefits:
e Less space used than many copies
e Allows for custom versions by combining non-linear patch-sets

Drawbacks:
e Onlyreally useful to a single developer at once
e Susceptible to many failure-modes



Local Computer

The ;

1. Local Ve Checkout Version Database
Benefits:

e Lesssy

o Allows Version 3
Drawbacks ’

e Onlyr

o Suscel Version 2

Version 1




The 3 Types of Version Control

2. Centralized Version Control

Relies on a client/server relationship. Like FTP the repository is located on one
server and provides access to many clients. All changes, users, commits and
information are sent-to/received-from this central repository.

The primary benefits of a centralized approach are:
e Itiseasytounderstand
e More control over users and access (since it is served from one place)
e More GUI & IDE clients (Subversion has been around longer)
e Simpleto get started




The 3 Types of Version Control

2. Centralized Version Control
Some drawbacks:

Dependent on access to the server

Hard to manage a server and backups

It can be slower because every command connects to the server
Branching and merging tools are difficult to use



The VG Central VCS Server
Computer A
2. Centrz ,
Version Database

oncse (D

e Depe ‘er Version 3

e Hardto manage a server and backu |

Y It can-be-clowar hacalica avvarvicom -

e Bran s dif Version 2

Computer B |

a




The 3 Types of Version Control

3. Distributed Version Control

Distributed VCS are a newer option. In a DVS, each user has their own copy of the

History [edit]

Git development began in April 2005, after many developers of the Linux kernel gave up access to BitKeeper, a proprietary source-control management (SCM)
system that they had been using to maintain the project since 2002.013114] The copyright holder of BitKeeper, Larry McVoy, had withdrawn free use of the product
after claiming that Andrew Tridgell had created SourcePuller by reverse engineering the BitKeeper protocols.!'® The same incident also spurred the creation of
another version-control system, Mercurial.

The primary benefits of a distributed approach are:
e Powerful and detailed change tracking, which means fewer conflicts
e No server necessary - all actions except sharing repositories are local
e Branching and merging are more reliable, and thus, used more often
e |t'sfast




The 3 Types of Version Control

3. Distributed Version Control

Some drawbacks:

The distributed model is harder to understand

It’s new, so not as many GUI clients

The revisions are not incremental numbers, thus harder to reference
Easier to make mistakes until you are familiar with the model



Server Computer

Version Database

The 3Typesg «=: ph Control

3. Distributed Version Contr version 2

|
Version 1

Some drawbacks:

The distributed model is harder to understand
It’s new, so not as many GUl/clients
Therevision  computer o 2Ntalnumbers  coputer 8 "eference

Easier toma ? you are famil ? o

Version Database | | » | Version Database
Version 3 Version 3
| [
Version 2 Version 2

| [
Version 1 Version 1




The

3. Distrik
Some drav
e Thec
e It'sn
e Ther
e Easie

Local Repo

Remote Repo

i
1
[}
1
e.g. |
e.g. master origin/master :
1
: index/ remote- ;
working LHEe: local A remote
staging tracking !
tree area branch Fat : branch
:
)
P |}
| git add ) !
:
s [}
git commit ) !
:
1
git push ::}

tch

T e

git pull

git ch

eckout

git merge/rebase

o 5 45




Aside: The 3 Copies of a git Checkout

Git works a bit different than other, past VCS’s . Rather than tracking changes to each
file linearly, each git commit is actually a binary snapshot of the git “filesystem” in the
checkout directory.

Since its distributed, each checkout of the repo is a full clone, unlike centralized VCS’
where the central repo may be the only full copy. Somewhat confusingly there are 3
copies of arepo in your git checkout: remote, local, and working.

When you make file changes you are in the working copy. When you merge those
changes locally you are editing the local copy. And finally, once you have your pull
request made, your commits will be merged by the release team(s) into the remote
copy. This allows for multiple remotes and flexible distribution of control.



WORKING COPY

Aside: The 3

Git works a bit different thar
file linearly, each git commit
checkout directory.

Since its distributed, each ch:
where the central repo may
copies of arepo in your git ct

LOCAL REPO

When you make file changes
changes locally you are editi
request made, your commits
copy. This allows for multiple

REMOTE REPO

yit Checkout

tracking changes to each
the git “filesystem” in the

git add

, unlike centralized VCS’
confusingly there are 3
king.

git commit

1en you merge those
ice you have your pull
2am(s) into the remote
on of control.

git push



Asid¢

Git works :
file linearly
checkout c

Since its di
where the
copies of a

When you
changes lo
request m:
copy. This.

Local Repo

Remote Repo

i
1
|}
1
e.g. |
e.g. master origin/master :
1
: index/ remote- ;
working LHEe: local A remote
staging tracking '
tree area branch Fat : branch
:
)
P |}
| git add ) !
:
s 1
git commit ) !
:
1
git push ::}

git fetch

<

git pull

git ch

eckout

git merge/rebase

o 5 45

out

rach
the

CS’



What git service is right for me?

Although git is alocal command line application, for ease of use and to both backup and share
your repository to collaborate with others you probably want use a hosted git service.

Private UCSC Gitlab service - https://git.ucsc.edu
e Benefits: it is hosted on-campus and offers private repositories for protected research
information and it has some usage limitations (non-commercial work only)
e Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues
can be a challenge
e Moreinfo available here — https://its.ucsc.edu/gitlab/



https://git.ucsc.edu
https://its.ucsc.edu/gitlab/

c

@ its.ucsc.eduy,

(1 SAATA AU

MyUCSC « People « Calendars « Maps + AZ Index

What git

Although gitis aloca
your repository to cc

Private UCSC

Benefits: it is ho
information and
Drawbacks: sinc
can be achallen
More info avail:

INFORMATION TECHNOLOGY SERVICES

New to UCSC?  Need Help?  Remote Resources  IT Services

v GitLab for Instruction

GitLab is a web-based service that leverages the version control capabilities of Git and added
features to support the full DevOps lifecycle. Git is an industry-standard tool for version control.
Using Gitlab can enhance the learning experience as students learn skills needed in real-life.

Gitlab for Instruction uses the self-managed community edition or free version of GitLab, and all
the core features of the vendor software are available for use.

GitLab/Git usage guidelines:

UCSC staff, faculty, and students can create projects for instructional and non-commercial
academic research.

By default, users may create 20 personal projects.

The system handles 500 users logged in at the same time.

Projects cannot store confidential or restricted information or data that needs protection
levels of P3 or P4.

Limits on the size of a single file in a repository:
° Max attachment - 10 MB

o Max import size - 15 MB
o Max push -unlimited

This service has a two-hour maintenance window between 9:00 AM and 11:00 AM PST on the

third Thursday of each month. Server security patching is scheduled in the Spring and Fall on one

Saturday. GitLab may be unavailable during that time.

How to get an Account

An account is automatically provisioned by following these instructions.

To obtain an account, go to Git.ucsc.edu and select the register tab. In the username and email
field, enter your [CruzID]@ucsc.edu email address. If the username and email do not match,
account creation will fail. Select a password with at least one uppercase letter, one lower case
letter, and at least one number. This password is not your CruzGold or CruzBlue password.

Information Security

About ITS Logins

Login to git.ucsc.edu

Login©

For problems related to your GitLab account or
general inquiries, email githelp{@}ucsc.edu.

FACULTY

INSTRUCTIONAL
TECHNOLOGY
NTER

Mon-Fri 8AM - 5PM
(831) 459-5506 - fitc@ucsc.edu
Call or email for support

Virtual Open Office Hours

Click the link to join via Zoom
Monday through Friday 2PM-3PM
Passcode: help

GitLab Help

For problems related to your GitLab account or
general inquiries, email githelp{@}ucsc.edu.

Ask an Instructional Designer

If you are an instructor, consider posting a
message in Online Education’s GitLab Slack
Channel for expert assistance in creative
problem solving and support in educational
technologies.

me?

both backup and share
isted git service.

-otected research
only)
rith remote colleagues


https://git.ucsc.edu
https://its.ucsc.edu/gitlab/

What git service is right for me?

Although git is alocal command line application, for ease of use and to both backup and share
your repository to collaborate with others you probably want use a hosted git service.

Private UCSC service - https://git.ucsc.edu
e Benefits: it is hosted on-campus and offers private repositories for protected research
information and it has some usage limitations (non-commercial work only)
e Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues
can be a challenge
e Moreinfo available here — https://its.ucsc.edu/gitlab/

Public service - https://github.com
e Benefits: since the service is publicly available on the internet collaboration with external
colleagues and returning forked work to original projects is very easy
e Drawbacks: since the free versions only allow public repos there are very real concerns
around data protection and privacy and these impact research restrictions and data security



https://git.ucsc.edu
https://its.ucsc.edu/gitlab/
https://github.com

Although git is &

your repositor

Private
e Benefits:i
informatio
e Drawback
canbeac

e Moreinfo

Public S
e Benefits: <
colleagues
e Drawback
around da

O Why GitHub?

Where the world
builds software

Millions ¢

56+ million

Developers

Code

Team Enterprise Explore

d companies b

Marketplace Pricing

Sign in [Sign up ‘

e?

packup and share
it service.

2 Sign up for GitHub.

3+ million
Organi: ons Repo:

Build like the best with
GitHub Enterprise

Take collaboration to the next level with security
and administrati

e features built for teams.

Contact Sales >

Collaborate

100+ million

pd research

ote colleagues

=] bl
1 with external
stripe
-

s _ T
e 2P E eal concerns

and data security

Develop Automate Secure Community


https://git.ucsc.edu
https://its.ucsc.edu/gitlab/
https://github.com

What is Reproducible Research?

“An article about computational results is advertising, not scholarship. The actual
scholarship is the full software environment, code and data, that produced the

»
resu It -Claerbout and Karrenbach, 1992, “Electronic Documents Give Reproducible Research a New Meaning”

> paper is available
> code is available
> datais available

Your research is considered reproducible if someone with access to your raw data,
your code, and your environment (hardware and software) can generate your results

(tables and figures). Your code should turn raw/original data into final results.

More info: https://www.nature.com/collections/prbfkwmwvz/#/



https://www.nature.com/collections/prbfkwmwvz/#/

nature

View all Nature Research journals

Search Q

Login ®

w I l nature > special

“An article aboi
scholarshipist
reSUIt.” -Claerbout a

> paper is avai
> code is avail
> datais avail:

Your research i
your code, and
(tables and figL

Explore content v Journal information v Publish with us v Subscribe Sign up for alerts £\ RSS feed

SPECIAL | 18 OCTOBER 2018
o _ o .

Challengesin irreproducible

Science moves forward by corroboration — when researchers verify

others’ results. Science advances faster when people waste less

time pursuing false leads. No research paper can ever be

considered to be the final word, but there are too many that do not

stand up to... show more

Key reads

PERSPECTIVE Openis not enough

OPEN ACCESS

15 NOV 2018 The solutions adopted by the high-energy physics community to foster

Nature Physics reproducible research are examples of best practices that could be embraced i
more widely. This first experience suggests that reproducibility requires going = =z —
beyond openness.
Xiaoli Chen, Siinje Dallmeier-Tiessen -+ Sebastian Neubert =

‘gm:y“;gm Before reproducibility must come preproducibility

Nature Instead of arguing about whether results hold up, let's push to provide enough “Science should be
information for others to repeat the experiments, says Philip Stark. ‘show me’, not
Philip B. Stark ‘trust me’.”

f‘;‘;‘;“k"‘;m Checklists work to improve science

Nature Nature authors say a reproducibility checklist is a step in the right direction, but
more needs to be done.

‘1"6":;:;";&8 Give every paper aread for reproducibility

Nature | was hired to ferret out errors and establish routines that promote rigorous e Deslwvay o Boost
research, says Catherine Winchester. research quality is to di

often and freely

Catherine Winchester

;z’m‘g;w Alongjourney to reproducible results

Nature Replicating our work took four years and 100,000 worms but brought surprising
discoveries, explain Gordon J. Lithgow, Monica Driscoll and Patrick Phillips.
Gordon J. Lithgow, Monica Driscoll & Patrick Phillips /

.
M fo: htt .
Ore In O. rlu.// VV VYV VVel IMALUI oo/ I1 1/ W\ IINV VLIS I I/ pr/ I R I ANV VIIIVY V& I1 ]

arch?

ip. The actual
‘oduced the

) your raw data,
erate your results
1al results.


https://www.nature.com/collections/prbfkwmwvz/#/

In what ways does a VCS impact my
scientific research?

Version control recommendations for reproducible scientific research:
1. Encapsulate the full project into one directory

2. Document everything and use code as documentation

3. Make figures, tables, and statistics the results of scripts

4. Write code that uses relative paths

5. Always set your seed for randomization

6. Release your code and data
Source: https.//rpubs.com/marschmi/105639

By following these few simple guidelines you can ensure your hard-earned science
workflow goes from being simply advertising to becoming a breakthrough ;")



https://rpubs.com/marschmi/105639

Organizing your research for a DVS

Organize data, code, and dependencies

- Encapsulate everything

- Separate raw data from derived data

- Separate data from code

- Use relative paths

- Write readme files (document everything!)

- Backup your derived data at multiple sites!!

- Commit often and sync to a remote VCS service

Considerations:
e being able to reproduce own results at a later date
e manage changes to data, analysis and results

e satisfy journal requirements
Source: http://kbroman.org/steps2rr/


http://kbroman.org/steps2rr/

Is your research robust?

Five recommendations for robust research:

1.

ko

Write code for humans, write data for computers

Make incremental changes

Make assertions and be loud, in code and in your methods

Use existing libraries (packages) whenever possible

Prevent catastrophe and help reproducibility by making your data read-only

— Research science is one of the most multi-disciplinary jobs in ANY field!

Not only must you know your science forward and backwards, but you need to be able to use the
necessary instrumentation, support IT systems, be knowledgeable about software design, data
science and programming best practices, as well as be versed in the legal, political and social issues
surrounding your field of study.

Learning what resources are available to edify and validate your own understanding of these
complexities is both paramount and absolutely required for successful reproducible research in both
the present science climate and for future generations.



VCS for Research checklist

1. Was as much as possible done by the computer?

2.Was any file hand-edited, or any part of the analysis done by hand?

3. Is everything documented, including the software environment?

4.\Was a version control system used?

5. Have we saved any output that we cannot reconstruct from original data and the
code?

6. How far back in the analysis pipeline can we go before our results are no longer
automatically reproducible?

It’s always a good idea to call sessionInfo() in your R code!

ALWAYS BACKUP YOUR DERIVED DATA!!!



VCS

1. Was as
2.Was ar
3.lsever
4. Was a»
5. Have w
code?

6. How fe
automati

It’s alway

ALWAYS

Research Pipeline

Author
Presentation code
.
Processing code  Analytic code ‘:‘,l "4 Figures
[ ] 1 P
| : )
i i ¢ n
— 1
I . aluti . i |
Eiasured s;:;!:‘t‘l: + ;‘:J‘le’::‘““““ Tabbes Article
ata
-
Murmerical Text
SUMmMmaries X
feader

Above picture by: Roger Peng (http://www.biostat.jhsph.edu/~rpeng/research.html)

1 the

ger



Version Control for Research Best
Practices

Additional Resources for Research Best Practices:
1. Best Practices for Scientific Computing by Greg Wilson et al., 2014
2. “Bioinformatics Data Skills” book by Vince Buffalo (and it’s github page)
3. ‘“Institutionalizing Transparency” by Jeremy Freese & Molly King, SOCIUS, 2018, vol4: 1-7
4. Nature Journal on reproducible research - www.nature.com/collections/prbfkwmwvz/#/17

Recommended Data Repositories:
https://www.nature.com/sdata/policies/repositories



http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://github.com/vsbuffalo/bds-files
https://journals.sagepub.com/doi/full/10.1177/2378023117739216
https://www.nature.com/collections/prbfkwmwvz/#/17
https://www.nature.com/sdata/policies/repositories

Working with git

->

Fundamentals for source control of

reproducible and robust research
What they are and how to use them

VCS collaboration strategies
What is the best way to work with my team,
group, collaborators and the public?




git Fundamentals 0

Identify yourself
Always set your name and email address for all commits:

% git config —-global user.name “Me”
% git config --global user.email me@ucsc.edu



git Fundamentals 1

Tracking Changes

Git will show you what bytes in a file have changed. When you clone a repository
from a host or create one locally you specify the set of files or directories you wish
to track. As you make changes they are tracked behind the scenes until you are
ready to commit those changes.

Committing

As you work with the files that are under version control, each change is tracked
automatically. This includes modifying a file, deleting a directory, adding a new file,
moving files about; basically anything that might alter the state of the underlying
filesystem. Rather than recording each change individually, git waits for you to
submit your changes as a single collection of actions which are called a commit.



git Fundamentals 2

Revisions and Change-Sets

When a commit is made, the changes are recorded as a change-set and given a unique
revision. This revision is a unique hash (like 846eee/7d5c3a1e952d34a3dff3d341e5).
Knowing the revision of a change-set it makes it easy to view or reference it later. A
change-set will includes a reference to the person who made the commit, when the
change was made, the files or directories affected, a comment and the changes that
happened within the files (lines of code).

When it comes to collaborating with others, viewing past revisions and change-sets
is a valuable tool to see how your project has evolved and for reviewing teammates’
code. Git has a formatted way to view a complete history (or log) of each revision and
change-set in the repository. The github/gitlab GUI has its own powerful tool -- Pull
Requests -- which we use for reviewing/approving code changes on UCSC projects.



git Fundamentals 3

Getting Updates

When collaborating with a team using git it is important to keep up with all published
changes. Getting the latest code from a repository is as simple as doing a pull or
update from the remote. When you do a pull only the changes since your last shared
commit are downloaded. A fetch on the other hand only retrieves the metadata.

Conflicts

What if the latest pull or commit results in a conflict? That is, what if your changes
are so similar to someone else’s changes that the VCS can’t automatically determine
which is the correct and authoritative change? Git provides a way to view the
difference between the conflicting versions: either edit the files manually to merge
the options or choose one revision over the other. It is often a good idea to
collaborate with the other person to make sure you're not undoing important work!



git Fundamentals 4

Diffing (or, Viewing the Differences)

Since each commit is recorded as a change to a file or set of files and directories, it
can be useful to view what changed between revisions. For instance, if a recent
deployment of your application is broken and you’ve narrowed down the cause to a
particular file, git would allow you see the who/why/when/what recently changed in
that file.

By viewing a diff, you can compare two files or more files to see what lines of code
changed, when it changed and who changed it. With git you can compare not only
two or more sequential revisions, but also any set of revisions from anywhere in the
history of the whole project.



git Fundamentals 5

Branching and Merging

Sometimes you want to experiment with changes to the repo that could break things
elsewhere (such adding as a new feature). Instead of committing this code directly to
the main set of files (usually called master), you should create a new branch. A branch
is basically a copy (or snapshot) of the repository that you can modify in parallel
without altering the files in master. You can continue to commit new changes to your
branch, while others commit to master without the changes affecting one other.

Once you're comfortable with the experimental code, you will want to make it part of
master again. This is where merging comes in. Since git has recorded every change so
far, it knows how each file has been altered. By merging the branch with master (or
even another branch), git will attempt to seamlessly merge each file and line of code
automatically. Once a branch is merged, a push updates the remote copy.



git Fundamentals 6

Resolving Conflicts

Sometimes when you merge you will get a “conflict” message, if you do you’ll have to
manually edit the conflicting parts (remove <<<<<<<,=======3nd >>>>>>>) , then
stage the file and commit. But don'’t fret, take a deep breath and use your human
ingenuity...

Unstaging a staged file:
% git reset HEAD file_to_unstage

To undo changes to a file which you modified and would like to revert to how it was
at the last commit:
% git checkout -- file_name



VCS Collaboration Strategies...

Every project is different!

Collab-styles are project specific: talk with your collaborators!

Ask: when working in this group, what is the best way to share
my work with others?

Forking < most common for scientific collaboration
Shared checkout

Single branch

Project branches

Environment branches

Github-flow

Gitflow



VCS Do’s and Don'ts for Research

Do

e Regularly commit and push your changes to a remote server
e Backup your derived datal!
e Use pull-requests to merge your forked changes into upstream repositories

Don'’t
e Place any research datainside a git repository
e Placelarge files inside a git repository
e Change the history on a branch that is checked out by others



Disclaimer!

Version control is a complex landscape inhabited by many varied, equally strong and
equally valid approaches. This preso does NOT intend to tell you how to use git, but

rather to outline some useful concepts, strategies, and best practices for collaborative
use of a VCS.

My recommendation is for each research project to develop a collaboration strategy
that works for their particular scope and type of project. Requesting repeated input
from other project collaborators is essential to developing/maintaining a successful
model!

Good news: You can now claim to be a certified Version Control Expert!!






e
-
KEEP
CALM

AND

GO SLAY




Overview

From here-on this preso assumes you know:

what a project and a repo are, how to create, manage,
checkout, sync, clone and commit code with git

=>» Branches or forks?
What they are and why science uses forks

git workflows, which?

Forking, Centralized, Feature branch, Gitflow,
Github-flow, oh my...

Pull requests, use ‘em!
A github web interface for discussing
proposed changes with the release team




To branch'e
That is the question...

Reproducible research actually forces our Hand a little bit...



Branches or Forking
Most collaborative scientific projects use forking.

The choice of a branching or forking model is more about how a project’s development is
managed than any other factor. Forking ensures hierarchical control; with most open-source
software, a benevolent-dictator rules over the “official” repo with an iron hand, controlling
what code gets integrated into the project and when. Whereas a branching model allows for

more fluid integration and distributed management of a project.

Afork is a copy of a repository (a clone on the server side). Forking is done through GitHub or
Gitlab.

® Watch 329 W Star 3,796 Y Fork 1425

!



Br

Mo

Thec
mans:
softw
what
more

A for
Gitla

Your GitHub repo

github.comiyou/coolgame

sﬁnust:1>

2. Clone

Your computer

3. Update a file
4. Commit

< 1. Fork

6. Pull request

)

Joe's GitHub repo

github.com/joe/coolgame

urce

18
; for

Jbor



Br

Mo

Thec
mans:
softw
what
more

A for
Gitla

Your GitHub repo

github.com/you/coolgame

Joe's GitHub repo

github.com/joe/coolgame

3. Push

Your computer

2. Merge

urce

18
; for

Jbor



Forking Workflow

Forking is fundamentally different than the other
workflows. Instead of using a single server-side
repository as the “central” codebase, every developer
uses a server-side repository. This means that each
contributor has not one, but two repos: a private local
one and a public server-side one.

) b b
The main advantage of Forking is that contributions
can be integrated without the need for everybody to

push to a single central repo, instead developers push
to their own server-side repos, and only the project
maintainer can push to the official repo. Maintainer
can accept commits from any developer without giving

C% % g them write access to the official codebase.

Porridge just right!



Origin/Master

Forking Workflow Commit U

The result is a distributed workflow that O_O_O O
\%

provides a flexible way for large, organic teams

(including untrusted third-parties) to

collaborate securely. This also makes it an ideal

workflow for open source projects including \(‘J
scientific research. Diverged from

central repository

If you’re coming from an SVN background, the Forking Workflow may seem like a
radical paradigm shift. But don’t be afraid—all it’s really doing is introducing another
level of abstraction on top of Feature Branches. Instead of sharing branches directly
through a single central repository, contributions are published to a server-side
repository dedicated to the originating developer.



Tk

Pull Req uests

Pull Requests are amazing. Many people use them
for open source work - fork a project, update the
project, send a pull request to the maintainer.

However, it can also be used as an internal code
review system or as a branch conversation view
with your collaborators since pull requests can be
sent from one branch to another in a single project.

=>» When to make a Pull Request
“I need help or review on this” or “Please
merge this in”

Role of Release Team
To merge the code to master and tag




Pull Requests, help smooth out the process of merging back into master.

both have
a hice GUI interface for
managing this process.


https://www.atlassian.com/git/tutorials/making-a-pull-request

= U Bitbucket Projects Repositories ~ Search for code or repositories...

Grizi) CruziD / |dM

... Pull requests

Br ., © o @M

¥

Collaborate and improve code quality

Branch. Discuss. Merge. With pull requests, you're in control.

Create a pull request Learn more



= U Bitbucket Projects Repositories ~

“&  Create pull request

s IdM U develop s IdM I master Change

Title"  test pull request

Description | * mobile
* mobile fix
* MFA Code pieces
* groan
* More MFA files
* merging MFA and mobile
* mobile updates
* Dispute queue fix
* undo mobile
* More MFA changes
* Put moira conditionals back in to limit link display
*INC0372900 - Campus Directory AOE - add text
* More duo changes. This bundle also includes INC0374677
* dev and test environments both look at idmsctst
* .htaccess fix to allow for shib

1] (® Preview

B NS oM

¥

Reviewers Rex Core x

Reviewers can approve a pull request to let others know when it is good to merge




Y Bitbucket Projects Repositories ~ Search for code or repositories...

“&  Create pull request

Select source and destination

%% CruziD/IdM - I develop -

William Woodrow committed 9a50a589a52 25 Apr 2016

& CruziD/IdM - 1’ master -

g

6

v g
A

ch

William Woodrow committed 43076c9a7e8 08 Feb 2017

Continue
2
Diff Commits
Author Commit Message Commit date Issues
William Woodrow  9a50a589a52 .htaccess fix to allow for shib 25 Apr 2016
William Woodrow  377159b£955 dev and test environments both look at idmsctst 25 Apr 2016
Idil Sabbagh b2a4277£fb31 More duo changes. This bundle also includes INC037467 22 Apr 2016
Syrma Dontcheva 32f£5362a9fc INC0372900 - Campus Directory AOE - add text 22 Apr 2016

1Al CSakhbhamhy Y R EL \SNR A | Di1f rmannirs aanditianale hanl in A limmit nl Aianlesysr 10 Annre N1



Stash Dev 10:50 AM (9 minutes ago) -
Bl tome |~

Bitbucket now bundles all your pull request activity notifications into batch emails by default. Fewer emails, less

distraction.
Learn more - Change back to immediate notifications

l#.Cruz  New activity on

test pull request =

develop | ' master

Rex Core
Thanks, William. | will be able to review this work no later than Thursday afternoon, 02/23/17.

Reply - Like - 10:39 AM

View pull request

You can unwatch this pull request to stop receiving email updates.
Don't want to receive batch emails anymore? Update your notification settings. [;‘J



Stash Dev 11:32 AM (3 minutes ago) L
to me |~
Bitbucket now bundles all your pull request activity notifications into batch emails by default. Fewer emails, less distraction.
Learn more - Change back to immediate notifications
New activity on
test pull request S

develop master

Rex Core marked the pull request as
11:17 AM

Rex Core the pull request
11:21 AM

View pull request

You can unwatch this pull request to stop receiving email updates.
Don't want to receive batch emails anymore? Update your notification settings.



Research VCS Best Practices

ait.ucsc.edu

Reproducible-Science-Curriculum Github repo for is a great place to start your reproducible research project repo


https://git.ucsc.edu
https://github.com/Reproducible-Science-Curriculum/rr-init

README.md

Reproducible Research Project Initialization

Research project initialization and organization following reproducible research guidelines.

Overview

project
doc/ documentation for the study
+- paper/ manuscript(s), whether generated or not

data raw and primary data, are not changed once created
|- raw/ raw data, will not be altered
+- clean/ cleaned data, will not be altered once created

code/ any programmatic code

results all output from workflows and analyses

|- figures/ graphs, likely designated for manuscript figures
+- pictures/ diagrams, images, and other non-graph graphics

scratch/ temporary files that can be safely deleted or lost
README the top level description of content

study.Rmd executable Rmarkdown for this study, if applicable
Makefile executable Makefile for this study, if applicable
study.Rproj RStudio project for this study, if applicable
datapackage.json # metadata for the (input and output) data files



https://git.ucsc.edu
https://github.com/Reproducible-Science-Curriculum/rr-init

FAQ/Additional Resources

Use of Github flow (rather than the overly complex git-flow) as a branching strategy and development workflow
°

Use of pull requests for code review and deployment control in Stash/Bitbucket
°

Branching rather than forking... Technical requirement of AWS, since OPSWorks only allows 1 repo. If you want to review the other “workflows”
review the following detailed doc about the 4 main workflow approaches and their requisite branching strategies

Some projects will have environment branches in addition to master, but the nice thing is those can be added later if we decide it makes sense. If you
wonder why one might need a branch per tier of deployment read more here

[}
For a thorough review of when these different branching strategies might be useful, and when to move from one to another read this
°

For more background on the value of continuous deployment as an approach regardless of whether a team is currently using it and the requirements
for continuous integration regardless of organizational release velocity see


http://scottchacon.com/2011/08/31/github-flow.html
https://www.atlassian.com/git/tutorials/making-a-pull-request/example
https://www.atlassian.com/git/tutorials/comparing-workflows
http://www.rightbrainnetworks.com/blog/implementing-a-source-control-branching-strategy/
http://www.creativebloq.com/web-design/choose-right-git-branching-strategy-121518344
http://laurathomson.com/2011/08/05/capability-for-continuous-deployment/

Thank you!

Questions? Comments?




o ot

GAME OVER

IIIIIIIIII



