
A git Workflow For

 Josh Sonstroem, DCO
 jsonstro@ucsc.edu

Reproducible
ResearchSponsored by:

 Hummingbird
Zoom
Clinic

What Is Version Control and
Why To Use It

Version control is a system that records changes to a file or set of files over
time so that you can recall specific versions later.

Using a Version Control System or VCS is a very wise thing to do. It can allow
you to revert files back to a previous state, reset an entire project back to a
previous state, compare changes over time, see who last modified something
that might be causing a problem and when that change was made, as well as
providing implicit backups.*

*Not if you are gitlab, where 6 backup technologies failed in Feb 2017, but alas...

What Is Version Control and
Why To Use It

Version control is a system that records changes to a file or set of files over
time so that you can recall specific versions later.

Using a Version Control System or VCS is a very wise thing to do. It can allow
you to revert files back to a previous state, reset an entire project back to a
previous state, compare changes over time, see who last modified something
that might be causing a problem and when that change was made, as well as
providing implicit backups.*

*Not if you are gitlab, where 6 backup technologies failed in Feb 2017, but alas...

The 3 Types of Version Control
In general, all VCS fall into 3 broad categories:

1. Local Version Control - e.g. rcs, naive, [single] local copy
2. Centralized Version Control - e.g. svn, hierarchical control, clients checkout

files, central server [as single point of failure]
3. Distributed Version Control - e.g. git, 1-to-many servers, each is a full clone,

allows for decentralized models of control/distribution

The third category -- a distributed version control system or DVS for short -- is
clearly ideal for projects like high-performance computing and scientific
reproducibility, allowing for collaboration across diverse groups of people in
multiple ways simultaneously within the same project. Many codebases for
collaborative science are already available on public source code repositories such
as Github, Gitlab, Sourceforge, Bitbucket, etc...

The 3 Types of Version Control
1. Local Version Control

DOOM’s Development: A Year of Madness
https://www.youtube.com/watch?v=eBU34NZhW7I @ 42:24
An interview with Doom’s lead programmer John Romero from the 2018 WeAreDevelopers
Conference

https://www.youtube.com/watch?v=eBU34NZhW7I

The 3 Types of Version Control
1. Local Version Control

DOOM’s Development: A Year of Madness
https://www.youtube.com/watch?v=eBU34NZhW7I @ 42:24

https://www.youtube.com/watch?v=eBU34NZhW7I
http://www.youtube.com/watch?v=eBU34NZhW7I&t=2544

The 3 Types of Version Control
1. Local Version Control

DOOM’s Development: A Year of Madness
https://www.youtube.com/watch?v=eBU34NZhW7I @ 42:24

Developed from the way versions of files were stored by appending filenames with
timestamps, e.g. GetOTP_9Jan93.java, GetOTP_12Jan93.java, etc.

Local VCS improved upon this crude approach by storing just the difference
between these files in a database.

Thus, the first version would be the actual file but each successive version would
correspond to the difference between the current and the last version. Difference
between two such versions are called patch-sets. A local database was used to track
changes by storing the patch-sets. Any particular version could be recreated by
adding the patch-sets up to that version.

https://www.youtube.com/watch?v=eBU34NZhW7I

The 3 Types of Version Control
1. Local Version Control

Benefits:
● Less space used than many copies
● Allows for custom versions by combining non-linear patch-sets

Drawbacks:
● Only really useful to a single developer at once
● Susceptible to many failure-modes

The 3 Types of Version Control
1. Local Version Control

Benefits:
● Less space used than many copies
● Allows for custom versions by combining non-linear patch-sets

Drawbacks:
● Only really useful to a single developer at once
● Susceptible to many failure-modes

The 3 Types of Version Control
2. Centralized Version Control

Relies on a client/server relationship. Like FTP the repository is located on one
server and provides access to many clients. All changes, users, commits and
information are sent-to/received-from this central repository.

The primary benefits of a centralized approach are:
● It is easy to understand
● More control over users and access (since it is served from one place)
● More GUI & IDE clients (Subversion has been around longer)
● Simple to get started

The 3 Types of Version Control
2. Centralized Version Control

Some drawbacks:

● Dependent on access to the server
● Hard to manage a server and backups
● It can be slower because every command connects to the server
● Branching and merging tools are difficult to use

The 3 Types of Version Control
2. Centralized Version Control

Some drawbacks:

● Dependent on access to the server
● Hard to manage a server and backups
● It can be slower because every command connects to the server
● Branching and merging tools are difficult to use

The 3 Types of Version Control
3. Distributed Version Control

Distributed VCS are a newer option. In a DVS, each user has their own copy of the
entire repository, not just the files but the ENTIRE history as well. Think of it as a
network of individual repositories. In many cases, even though the model is
distributed, services like Beanstalk are used for simplifying the technical challenges
of sharing changes.

The primary benefits of a distributed approach are:
● Powerful and detailed change tracking, which means fewer conflicts
● No server necessary – all actions except sharing repositories are local
● Branching and merging are more reliable, and thus, used more often
● It’s fast

The 3 Types of Version Control
3. Distributed Version Control

Some drawbacks:

● The distributed model is harder to understand
● It’s new, so not as many GUI clients
● The revisions are not incremental numbers, thus harder to reference
● Easier to make mistakes until you are familiar with the model

The 3 Types of Version Control
3. Distributed Version Control

Some drawbacks:

● The distributed model is harder to understand
● It’s new, so not as many GUI clients
● The revisions are not incremental numbers, thus harder to reference
● Easier to make mistakes until you are familiar with the model

The 3 Types of Version Control
3. Distributed Version Control

Some drawbacks:

● The distributed model is harder to understand
● It’s new, so not as many GUI clients
● The revisions are not incremental numbers, thus harder to reference
● Easier to make mistakes until you are familiar with the model

Aside: The 3 Copies of a git Checkout
Git works a bit different than other, past VCS’s . Rather than tracking changes to each
file linearly, each git commit is actually a binary snapshot of the git “filesystem” in the
checkout directory.

Since its distributed, each checkout of the repo is a full clone, unlike centralized VCS’
where the central repo may be the only full copy. Somewhat confusingly there are 3
copies of a repo in your git checkout: remote, local, and working.

When you make file changes you are in the working copy. When you merge those
changes locally you are editing the local copy. And finally, once you have your pull
request made, your commits will be merged by the release team(s) into the remote
copy. This allows for multiple remotes and flexible distribution of control.

Aside: The 3 Copies of a git Checkout
Git works a bit different than other, past VCS’s . Rather than tracking changes to each
file linearly, each git commit is actually a binary snapshot of the git “filesystem” in the
checkout directory.

Since its distributed, each checkout of the repo is a full clone, unlike centralized VCS’
where the central repo may be the only full copy. Somewhat confusingly there are 3
copies of a repo in your git checkout: remote, local, and working.

When you make file changes you are in the working copy. When you merge those
changes locally you are editing the local copy. And finally, once you have your pull
request made, your commits will be merged by the release team(s) into the remote
copy. This allows for multiple remotes and flexible distribution of control.

Aside: The 3 Copies of a git Checkout
Git works a bit different than other, past VCS’s . Rather than tracking changes to each
file linearly, each git commit is actually a binary snapshot of the git “filesystem” in the
checkout directory.

Since its distributed, each checkout of the repo is a full clone, unlike centralized VCS’
where the central repo may be the only full copy. Somewhat confusingly there are 3
copies of a repo in your git checkout: remote, local, and working.

When you make file changes you are in the working copy. When you merge those
changes locally you are editing the local copy. And finally, once you have your pull
request made, your commits will be merged by the release team(s) into the remote
copy. This allows for multiple remotes and flexible distribution of control.

What git service is right for me?
Although git is a local command line application, for ease of use and to both backup and share

your repository to collaborate with others you probably want use a hosted git service.

Private UCSC Gitlab service - https://git.ucsc.edu
● Benefits: it is hosted on-campus and offers private repositories for protected research

information and it has some usage limitations (non-commercial work only)

● Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues

can be a challenge

● More info available here → https://its.ucsc.edu/gitlab/

https://git.ucsc.edu
https://its.ucsc.edu/gitlab/

What git service is right for me?
Although git is a local command line application, for ease of use and to both backup and share

your repository to collaborate with others you probably want use a hosted git service.

Private UCSC Gitlab service - https://git.ucsc.edu
● Benefits: it is hosted on-campus and offers private repositories for protected research

information and it has some usage limitations (non-commercial work only)

● Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues

can be a challenge

● More info available here → https://its.ucsc.edu/gitlab/

https://git.ucsc.edu
https://its.ucsc.edu/gitlab/

What git service is right for me?
Although git is a local command line application, for ease of use and to both backup and share

your repository to collaborate with others you probably want use a hosted git service.

Private UCSC Gitlab service - https://git.ucsc.edu
● Benefits: it is hosted on-campus and offers private repositories for protected research

information and it has some usage limitations (non-commercial work only)

● Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues

can be a challenge

● More info available here → https://its.ucsc.edu/gitlab/

Public Github service - https://github.com
● Benefits: since the service is publicly available on the internet collaboration with external

colleagues and returning forked work to original projects is very easy

● Drawbacks: since the free versions only allow public repos there are very real concerns

around data protection and privacy and these impact research restrictions and data security

https://git.ucsc.edu
https://its.ucsc.edu/gitlab/
https://github.com

What git service is right for me?
Although git is a local command line application, for ease of use and to both backup and share

your repository to collaborate with others you probably want use a hosted git service.

Private UCSC Gitlab service - https://git.ucsc.edu
● Benefits: it is hosted on-campus and offers private repositories for protected research

information and it has some usage limitations (non-commercial work only)

● Drawbacks: since it requires a UCSC email to sign-up collaborating with remote colleagues

can be a challenge

● More info available here → https://its.ucsc.edu/gitlab/

Public Github service - https://github.com
● Benefits: since the service is publicly available on the internet collaboration with external

colleagues and returning forked work to original projects is very easy

● Drawbacks: since the free versions only allow public repos there are very real concerns

around data protection and privacy and these impact research restrictions and data security

https://git.ucsc.edu
https://its.ucsc.edu/gitlab/
https://github.com

What is Reproducible Research?
“An article about computational results is advertising, not scholarship. The actual
scholarship is the full software environment, code and data, that produced the
result.” –Claerbout and Karrenbach, 1992, “Electronic Documents Give Reproducible Research a New Meaning”

➢ paper is available
➢ code is available
➢ data is available

Your research is considered reproducible if someone with access to your raw data,
your code, and your environment (hardware and software) can generate your results
(tables and figures). Your code should turn raw/original data into final results.

More info: https://www.nature.com/collections/prbfkwmwvz/#/

https://www.nature.com/collections/prbfkwmwvz/#/

What is Reproducible Research?
“An article about computational results is advertising, not scholarship. The actual
scholarship is the full software environment, code and data, that produced the
result.” –Claerbout and Karrenbach, 1992, “Electronic Documents Give Reproducible Research a New Meaning”

➢ paper is available
➢ code is available
➢ data is available

Your research is considered reproducible if someone with access to your raw data,
your code, and your environment (hardware and software) can generate your results
(tables and figures). Your code should turn raw/original data into final results.

More info: https://www.nature.com/collections/prbfkwmwvz/#/

https://www.nature.com/collections/prbfkwmwvz/#/

Version control recommendations for reproducible scientific research:
1. Encapsulate the full project into one directory
2. Document everything and use code as documentation
3. Make figures, tables, and statistics the results of scripts
4. Write code that uses relative paths
5. Always set your seed for randomization
6. Release your code and data
Source: https://rpubs.com/marschmi/105639

By following these few simple guidelines you can ensure your hard-earned science
workflow goes from being simply advertising to becoming a breakthrough ;^)

In what ways does a VCS impact my
scientific research?

https://rpubs.com/marschmi/105639

Organize data, code, and dependencies
– Encapsulate everything
– Separate raw data from derived data
– Separate data from code
– Use relative paths
– Write readme files (document everything!)
– Backup your derived data at multiple sites!!
– Commit often and sync to a remote VCS service

Considerations:
• being able to reproduce own results at a later date
• manage changes to data, analysis and results
• satisfy journal requirements
Source: http://kbroman.org/steps2rr/

Organizing your research for a DVS

http://kbroman.org/steps2rr/

Five recommendations for robust research:
1. Write code for humans, write data for computers

2. Make incremental changes

3. Make assertions and be loud, in code and in your methods

4. Use existing libraries (packages) whenever possible

5. Prevent catastrophe and help reproducibility by making your data read-only

→ Research science is one of the most multi-disciplinary jobs in ANY field!

Not only must you know your science forward and backwards, but you need to be able to use the

necessary instrumentation, support IT systems, be knowledgeable about software design, data

science and programming best practices, as well as be versed in the legal, political and social issues

surrounding your field of study.

Learning what resources are available to edify and validate your own understanding of these

complexities is both paramount and absolutely required for successful reproducible research in both

the present science climate and for future generations.

Is your research robust?

1. Was as much as possible done by the computer?
2. Was any file hand-edited, or any part of the analysis done by hand?
3. Is everything documented, including the software environment?
4. Was a version control system used?
5. Have we saved any output that we cannot reconstruct from original data and the
code?
6. How far back in the analysis pipeline can we go before our results are no longer
automatically reproducible?

It’s always a good idea to call sessionInfo() in your R code!

ALWAYS BACKUP YOUR DERIVED DATA!!!

VCS for Research checklist

1. Was as much as possible done by the computer?
2. Was any file hand-edited, or any part of the analysis done by hand?
3. Is everything documented, including the software environment?
4. Was a version control system used?
5. Have we saved any output that we cannot reconstruct from original data and the
code?
6. How far back in the analysis pipeline can we go before our results are no longer
automatically reproducible?

It’s always a good idea to call sessionInfo() in your R code!

ALWAYS BACKUP YOUR DERIVED DATA!!!

VCS for Research checklist

Additional Resources for Research Best Practices:
1. Best Practices for Scientific Computing by Greg Wilson et al., 2014
2. “Bioinformatics Data Skills” book by Vince Buffalo (and it’s github page)
3. “Institutionalizing Transparency” by Jeremy Freese & Molly King, SOCIUS, 2018, vol4: 1-7
4. Nature Journal on reproducible research - www.nature.com/collections/prbfkwmwvz/#/17

Recommended Data Repositories:
https://www.nature.com/sdata/policies/repositories

Version Control for Research Best
Practices

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
https://github.com/vsbuffalo/bds-files
https://journals.sagepub.com/doi/full/10.1177/2378023117739216
https://www.nature.com/collections/prbfkwmwvz/#/17
https://www.nature.com/sdata/policies/repositories

Working with git
➔ Fundamentals for source control of

reproducible and robust research
What they are and how to use them

➔ VCS collaboration strategies
What is the best way to work with my team,
group, collaborators and the public?

git Fundamentals 0
Identify yourself
Always set your name and email address for all commits:

% git config –-global user.name “Me”
% git config –-global user.email me@ucsc.edu

git Fundamentals 1
Tracking Changes
Git will show you what bytes in a file have changed. When you clone a repository
from a host or create one locally you specify the set of files or directories you wish
to track. As you make changes they are tracked behind the scenes until you are
ready to commit those changes.

Committing
As you work with the files that are under version control, each change is tracked
automatically. This includes modifying a file, deleting a directory, adding a new file,
moving files about; basically anything that might alter the state of the underlying
filesystem. Rather than recording each change individually, git waits for you to
submit your changes as a single collection of actions which are called a commit.

git Fundamentals 2
Revisions and Change-Sets

When a commit is made, the changes are recorded as a change-set and given a unique
revision. This revision is a unique hash (like 846eee7d5c3a1e952d34a3dff3d341e5).
Knowing the revision of a change-set it makes it easy to view or reference it later. A
change-set will includes a reference to the person who made the commit, when the
change was made, the files or directories affected, a comment and the changes that
happened within the files (lines of code).

When it comes to collaborating with others, viewing past revisions and change-sets
is a valuable tool to see how your project has evolved and for reviewing teammates’
code. Git has a formatted way to view a complete history (or log) of each revision and
change-set in the repository. The github/gitlab GUI has its own powerful tool -- Pull
Requests -- which we use for reviewing/approving code changes on UCSC projects.

git Fundamentals 3
Getting Updates

When collaborating with a team using git it is important to keep up with all published
changes. Getting the latest code from a repository is as simple as doing a pull or
update from the remote. When you do a pull only the changes since your last shared
commit are downloaded. A fetch on the other hand only retrieves the metadata.

Conflicts

What if the latest pull or commit results in a conflict? That is, what if your changes
are so similar to someone else’s changes that the VCS can’t automatically determine
which is the correct and authoritative change? Git provides a way to view the
difference between the conflicting versions: either edit the files manually to merge
the options or choose one revision over the other. It is often a good idea to
collaborate with the other person to make sure you’re not undoing important work!

git Fundamentals 4
Diffing (or, Viewing the Differences)

Since each commit is recorded as a change to a file or set of files and directories, it
can be useful to view what changed between revisions. For instance, if a recent
deployment of your application is broken and you’ve narrowed down the cause to a
particular file, git would allow you see the who/why/when/what recently changed in
that file.

By viewing a diff, you can compare two files or more files to see what lines of code
changed, when it changed and who changed it. With git you can compare not only
two or more sequential revisions, but also any set of revisions from anywhere in the
history of the whole project.

git Fundamentals 5
Branching and Merging

Sometimes you want to experiment with changes to the repo that could break things
elsewhere (such adding as a new feature). Instead of committing this code directly to
the main set of files (usually called master), you should create a new branch. A branch
is basically a copy (or snapshot) of the repository that you can modify in parallel
without altering the files in master. You can continue to commit new changes to your
branch, while others commit to master without the changes affecting one other.

Once you’re comfortable with the experimental code, you will want to make it part of
master again. This is where merging comes in. Since git has recorded every change so
far, it knows how each file has been altered. By merging the branch with master (or
even another branch), git will attempt to seamlessly merge each file and line of code
automatically. Once a branch is merged, a push updates the remote copy.

git Fundamentals 6
Resolving Conflicts

Sometimes when you merge you will get a “conflict” message, if you do you’ll have to
manually edit the conflicting parts (remove <<<<<<<, ======= and >>>>>>>) , then
stage the file and commit. But don’t fret, take a deep breath and use your human
ingenuity...

Unstaging a staged file:
% git reset HEAD file_to_unstage

To undo changes to a file which you modified and would like to revert to how it was
at the last commit:
% git checkout –- file_name

VCS Collaboration Strategies...
Every project is different!
Collab-styles are project specific: talk with your collaborators!

Ask: when working in this group, what is the best way to share
my work with others?

● Forking ← most common for scientific collaboration
● Shared checkout
● Single branch
● Project branches
● Environment branches
● Github-flow
● Gitflow

VCS Do’s and Don’ts for Research
Do
● Regularly commit and push your changes to a remote server
● Backup your derived data!
● Use pull-requests to merge your forked changes into upstream repositories

Don’t
● Place any research data inside a git repository
● Place large files inside a git repository
● Change the history on a branch that is checked out by others

Disclaimer!
Version control is a complex landscape inhabited by many varied, equally strong and
equally valid approaches. This preso does NOT intend to tell you how to use git, but
rather to outline some useful concepts, strategies, and best practices for collaborative
use of a VCS.

My recommendation is for each research project to develop a collaboration strategy
that works for their particular scope and type of project. Requesting repeated input
from other project collaborators is essential to developing/maintaining a successful
model!

Good news: You can now claim to be a certified Version Control Expert!!

VCS
CODE

Overview
From here-on this preso assumes you know:
what a project and a repo are, how to create, manage,
checkout, sync, clone and commit code with git

➔ Branches or forks?
What they are and why science uses forks

➔ git workflows, which?
Forking, Centralized, Feature branch, Gitflow,

Github-flow, oh my...

➔ Pull requests, use ‘em!
A github web interface for discussing
proposed changes with the release team

To branch or to fork?
That is the question…

Reproducible research actually forces our hand a little bit...

Branches or Forking

The choice of a branching or forking model is more about how a project’s development is
managed than any other factor. Forking ensures hierarchical control; with most open-source
software, a benevolent-dictator rules over the “official” repo with an iron hand, controlling
what code gets integrated into the project and when. Whereas a branching model allows for
more fluid integration and distributed management of a project.

A fork is a copy of a repository (a clone on the server side). Forking is done through GitHub or
Gitlab.

Most collaborative scientific projects use forking.

Branches or Forking

The choice of a branching or forking model is more about how a project’s development is
managed than any other factor. Forking ensures hierarchical control; with most open-source
software, a benevolent-dictator rules over the “official” repo with an iron hand, controlling
what code gets integrated into the project and when. Whereas a branching model allows for
more fluid integration and distributed management of a project.

A fork is a copy of a repository (a clone on the server side). Forking is done through GitHub or
Gitlab.

Most collaborative scientific projects use forking.

Branches or Forking

The choice of a branching or forking model is more about how a project’s development is
managed than any other factor. Forking ensures hierarchical control; with most open-source
software, a benevolent-dictator rules over the “official” repo with an iron hand, controlling
what code gets integrated into the project and when. Whereas a branching model allows for
more fluid integration and distributed management of a project.

A fork is a copy of a repository (a clone on the server side). Forking is done through GitHub or
Gitlab.

Most collaborative scientific projects use forking.

Forking Workflow

Forking is fundamentally different than the other
workflows. Instead of using a single server-side
repository as the “central” codebase, every developer

uses a server-side repository. This means that each
contributor has not one, but two repos: a private local

one and a public server-side one.

Porridge just right!

The main advantage of Forking is that contributions
can be integrated without the need for everybody to
push to a single central repo, instead developers push
to their own server-side repos, and only the project
maintainer can push to the official repo. Maintainer
can accept commits from any developer without giving
them write access to the official codebase.

The result is a distributed workflow that
provides a flexible way for large, organic teams

(including untrusted third-parties) to
collaborate securely. This also makes it an ideal
workflow for open source projects including
scientific research.

If you’re coming from an SVN background, the Forking Workflow may seem like a
radical paradigm shift. But don’t be afraid—all it’s really doing is introducing another
level of abstraction on top of Feature Branches. Instead of sharing branches directly
through a single central repository, contributions are published to a server-side
repository dedicated to the originating developer.

Forking Workflow Commit

Pull Requests
Pull Requests are amazing. Many people use them
for open source work - fork a project, update the

project, send a pull request to the maintainer.

However, it can also be used as an internal code
review system or as a branch conversation view
with your collaborators since pull requests can be
sent from one branch to another in a single project.

➔ When to make a Pull Request
“I need help or review on this” or “Please
merge this in”

➔ Role of Release Team
To merge the code to master and tag

Pull Requests, help smooth out the process of merging back into master.

Gitlab/Github both have
a nice GUI interface for
managing this process.

https://www.atlassian.com/git/tutorials/making-a-pull-request

https://www.atlassian.com/git/tutorials/making-a-pull-request

Pull-Request Steps

Research VCS Best Practices
Use forks and pull
requests to
collaborate.
Release both your
code and data for
reproducibility

Regularly commit
and push your
code to a remote
repository service
such as gitlab
(git.ucsc.edu)

Organize and
separate code &
read-only data;
automate, script,
& document
EVERYTHING!

Reproducible-Science-Curriculum Github repo for Reproducible Research Project Initialization is a great place to start your reproducible research project repo

https://git.ucsc.edu
https://github.com/Reproducible-Science-Curriculum/rr-init

Research VCS Best Practices
Use forks and pull
requests to
collaborate.
Release both your
code and data for
reproducibility

Regularly commit
and push your
code to a remote
repository service
such as gitlab
(git.ucsc.edu)

Organize and
separate code &
read-only data;
automate, script,
& document
EVERYTHING!

Reproducible-Science-Curriculum Github repo for Reproducible Research Project Initialization is a great place to start your reproducible research project repo

https://git.ucsc.edu
https://github.com/Reproducible-Science-Curriculum/rr-init

FAQ/Additional Resources
Git Branching and Workflow Strategies
Use of Github flow (rather than the overly complex git-flow) as a branching strategy and development workflow

● http://scottchacon.com/2011/08/31/github-flow.html

Use of pull requests for code review and deployment control in Stash/Bitbucket

● https://www.atlassian.com/git/tutorials/making-a-pull-request/example

Branching rather than forking… Technical requirement of AWS, since OPSWorks only allows 1 repo. If you want to review the other “workflows”
review the following detailed doc about the 4 main workflow approaches and their requisite branching strategies

● https://www.atlassian.com/git/tutorials/comparing-workflows

Some projects will have environment branches in addition to master, but the nice thing is those can be added later if we decide it makes sense. If you
wonder why one might need a branch per tier of deployment read more here

● http://www.rightbrainnetworks.com/blog/implementing-a-source-control-branching-strategy/

For a thorough review of when these different branching strategies might be useful, and when to move from one to another read this

● http://www.creativebloq.com/web-design/choose-right-git-branching-strategy-121518344

For more background on the value of continuous deployment as an approach regardless of whether a team is currently using it and the requirements
for continuous integration regardless of organizational release velocity see

● http://laurathomson.com/2011/08/05/capability-for-continuous-deployment/

http://scottchacon.com/2011/08/31/github-flow.html
https://www.atlassian.com/git/tutorials/making-a-pull-request/example
https://www.atlassian.com/git/tutorials/comparing-workflows
http://www.rightbrainnetworks.com/blog/implementing-a-source-control-branching-strategy/
http://www.creativebloq.com/web-design/choose-right-git-branching-strategy-121518344
http://laurathomson.com/2011/08/05/capability-for-continuous-deployment/

Questions? Comments?
Thank you!

Bye bye!

